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Coherent states of Gompertzian growth
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The origin of the Gompertz functionG(t)5G0eb/a(12e2at) widely applied to fit the biological and medical
data, particularly growth of organisms, organs, and tumors is analyzed. It is shown that this function is a
solution of a time-dependent counterpart of the Schro¨dinger equation for the Morse oscillator with anharmo-
nicity constant equal to 1. The coherent states of the Gompertzian systems, which minimize the time-energy
uncertainty relation, have been found. These are eigenstates of the annihilation operator identified with the
operator of growth, whereas eigenstates of the creation operator represent the Gompertzian states of regression.
The coherent formation of the specific growth patterns in the Gompertzian systems appears as a result of the
nonlocal long-range cooperation between the microlevel~the individual cell! and the macrolevel~the system as
a whole!.
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I. INTRODUCTION

Evaluation of the possible growth modes or formati
patterns of the systems evolving in time is an important t
to realize especially for biological and medical sciences.
vestigations in the field have concentrated on~i! finding
models of growth which satisfactorily fit the experimen
data@1–6#, ~ii ! prediction of the growing systems respon
to external agents@7–10#, and ~iii ! explanation of the basic
mechanisms regulating growth@11–13#, in particular coop-
erative behavior and communication channels between
elements of the growing systems@14–17#.

Among the different models of growth, the Gomper
function @18#

G~ t !5G0eb/a(12e2at) ~1!

has been most broadly and successfully applied to fit
experimental data@19–25#, particularly the growth of organ
isms, organs, tissues, and tumors. Herea is retardation con-
stant;b denotes the initial growth or regression rate consta
the sign ofb indicates whether the system grows (1) or
regresses (2). The constantG05G(t50) stands for the ini-
tial characteristic of the system, for instance, the initial ma
volume, diameter, or number of proliferating cells. An inte
esting feature of function~1! is that it properly describes
growth of the macrosystems composed of a large initial nu
ber of proliferating cells (G05103–105) @25# as well as mi-
crosystems composed of a single cell (G051) @24#. In this
work we investigate the Gompertzian systems in whichG0
51 for the sake of interpretative simplicity

The Gompertz function~1! belongs to the wide class o
sigmoidal~S-shaped! functions@3# and describes exponentia
growth, which then is exponentially retarded and saturate
time continues. The Gompertzian growth is a result of t
classes of competitive processes: the first process stimu
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growth and the second constrains growth at the satura
stage. The upper limit of the Gompertzian growth is char
terized by the asymptote

G`5G0eb/a, ~2!

whereas the inflection point is fixed at

t i52
1

a
lnS a

bD , G~ t i !5G0e(b2a)/a. ~3!

The Gompertz function~1! is a solution of the temporal first
order differential equation (b.0) @18#

dG~ t !

dt
2be2atG~ t !50, ~4!

whereas the regression solutionG†(t) satisfies

dG†~ t !

dt
1be2atG†~ t !50. ~5!

Many attempts have been undertaken to interpret func
~1! and Eqs.~4! and ~5! in biological @26#, mathematical
@27#, or thermodynamical terms@28#. In this work we inter-
pret the growth of the Gompertzian systems in terms of
time-dependent counterpart of the coherent states of
Morse oscillator. Such states minimize the time-energy
certainty relation and are eigenstates of the annihilation
erator identified with the operator of the Gompertzi
growth. We derive also the second-order differential equat
governing the Gompertzian growth, which includes Eqs.~4!
and ~5! as the special cases. This equation is a tim
dependent counterpart of the Schro¨dinger equation for the
Morse oscillator with anharmonicity constant equal to 1.

II. GOMPERTZ-MORSE EQUATION

Differentiating function~1! twice with respect to the time
coordinate and taking advantage of Eq.~4!, we get the
second-order differential equation
©2003 The American Physical Society16-1
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2
d2G~ t !

dt2
2bae2atG~ t !1b2e22atG~ t !50, ~6!

which can alternatively be written as

2
d2G~ t !

dt2
1

a2

4 S 12
2b

a
e2atD 2

G~ t !5
a2

4
G~ t !. ~7!

The function

V~ t !5
a2

4 S 12
2b

a
e2atD 2

~8!

appearing in Eq.~7! has a minimum equal to zero for

te52
1

a
lnS a

2bD , ~9!

hence, Eq.~7! can be rewritten in the form

2
1

2

d2G~t!

dt2
1

1

4
~12e2A2t!2G~t!5

1

4
G~t! ~10!

in which

G~t!5G`e2(1/2)e2A2t
~11!

and

t5~A2!21a~ t2te!. ~12!

The second term in Eq.~10! consists of the time-depende
counterpart of the potential

V~x!5De~12e2ax!2 ~13!

introduced first by Morse@29# to describe anharmonic vibra
tions in diatomic systems. HereDe is the dissociation energ
of the system, whereasx denotes the displacement of th
atom from the equilibrium position.

To explain what Eq.~10! means let us consider the Schr¨-
dinger equation for the Morse oscillator

2
\2

2m0

d2c~x!

dx2
1De~12e2ax!2c~x!5Ec~x! ~14!

which transformed to dimensionless coordinate

q5~m0ve /\!1/2x ~15!

gives @30#

2
1

2

d2c~q!

dq2
1

1

4xe
~12e2A2xeq!2c~q!5

E

\ve
c~q!.

~16!

Here
02191
ve5aA2De

m0
~17!

is the vibrational frequency defined by the reduced massm0
of the diatomic system,xe is anharmonicity constant

xe5
\ve

4De
~18!

defined by Planck’s constanth5\2p.
The Morse procedure@29# applied to Eq.~16! provides

eigenvalues

Ev5\veF S v1
1

2D2S v1
1

2D 2

xeG , v50,1,2. . . , ~19!

and ground-state (v50) eigenfunction

c0~q!5e21/2xee2A2xeq
e21/A2xe(12xe)q; ~20!

consequently Eq.~16! can be specified in the form@30#

2
1

2

d2c~q!

dq2
1

1

4xe
~12e2A2xeq!2c~q!

5F S v1
1

2D2S v1
1

2D 2

xeGc~q!. ~21!

It becomes apparent that the correspondences

q→t, xe→1, v→0 ~22!

transform Eq.~21! into Eq. ~10! and function~20! into Eq.
~11!. Hence, the Gompertz function~1! can be viewed as the
ground state (v50) solution of the time-dependent counte
part of the Schro¨dinger equation for the Morse oscillato
with anharmonicity constantxe51.

The question emerges: does Eq.~7! have solutions corre-
sponding to the Morse solutions forv51,2 . . . ? Toanswer
this question let us rewrite Eq.~7! in the form

2
d2G~ t !

dt2
1

a2

4 S 12
2b

a
e2atD 2

G~ t !5WG~ t !, ~23!

which conforms to the standard eigenvalue problemŴG(t)
5WG(t). Then applying the variable

y5e2t8, t85a~ t2te!, ~24!

Eq. ~23! is transformed to

d2G~y!

dy2
1

1

y

dG~y!

dy
1S 2

1

4
1

1

2y
1

W2a2/4

a2y2 D G~y!50.

~25!

Introducing

G~y!5e2y/2yb/2f ~y!,
W2a2/4

a2
52

b2

4
~26!
6-2
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into Eq. ~25!, one gets

y
d2f ~y!

dy2
1~b112y!

d f~y!

dy
2

b

2
f ~y!50. ~27!

The solutions of Eq.~27! can be given by the generalize
Laguerre polynomials@29# provided that the last term take
an integer value2b/25v (v is an integer number!. The
relationb522v together with Eq.~26! provide eigenvalues
of Eq. ~23!

Wv5a2S 1

4
2v2D , v50,1,2. . . , ~28!

which for v50 yields the eigenvalueW05a2/4 of Eq. ~7!.
The mathematical functions describing Gompertz

growth or regression should be continuous, single valu
and finite. In this respect these resemble quantal function
the Q class. SinceG(y) defined by Eq.~26! with y5e2t8

given by Eq. ~24! should take finite values fortP^0,̀ &,
parameterb522v cannot be negative. This criterion is sa
isfied only for v50; consequently Eq.~23! has only one
fundamental~ground-state! eigenmode characterized by th
Gompertz function~1!, which corresponds to the eigenvalu
W05a2/4. The later quantity is also the limiting value

W05 lim
t→`

a2

4 S 12
2b

a
e2atD 2

5
a2

4
~29!

of the time-dependent Morse function~8!. We conclude that
the Gompertzian growth has only one eigenmode represe
by function ~1!. This eigenmode corresponds to the eige
valueW05a2/4 being an asymptote~for t→`) of the Morse
function ~8!. Hence, in the Gompertzian systems the tra
port of mass~or mass flux! is not of oscillatory type, but
takes place only in the direction consistent with the arrow
time ~see Fig. 1!.

III. GROWTH AND REGRESSION OPERATORS

Introducing two operators

Â5
1

A2
F d

dt
1

1

A2
~12e2A2t!2

1

A2
G , ~30!

Â†5
1

A2
F2

d

dt
1

1

A2
~12e2A2t!2

1

A2
G , ~31!

the Gompertz-Morse equation~10! can be rearranged int
factorized form

A†AG~t!50. ~32!

It is easy to verify that the Gompertz function~11! is a so-
lution of the equation

ÂG~t!5
1

A2
F d

dt
2

1

A2
e2A2tGG`e2(1/2)e2A2t

50, ~33!
02191
n
d,
of

ed
-

-

f

which corresponds to the Gompertz equation of growth~4!.
Hence, we identifyÂ with the operator of growth. On the
other hand, operatorÂ† produces the regression equation~5!

Â†G†~t!5
1

A2
F2

d

dt
2

1

A2
e2A2tGG`

† e1(1/2)e2A2t
50,

~34!

hence, we identifyÂ† with the regression operator. It shou
be pointed out that the change in sign of the regression fu
tion G†(t) appearing in Eq.~34! is not produced by complex
conjugation (a,bPR, are real numbers! but rather by the
relation

c~t!†5c~t!21 ~35!

valid for c(t)PR.
The growth equation~33! takes a simple form in the ket

bra notation

Âu0&50, ~36!

whereas its adjoint

~Âu0&)†5^0uÂ†50 ~37!

corresponds to regression equation~34!. Here u0& and ^0u
represent the Gompertz ground states of growth and reg
sion, respectively.

Introducing an analog of the well-known particle numb
operatorN̂5Â†Â @31# and a time-dependent functiong(t)
5e2A2t, we get the following commutation relations:

@Â,Â†#5g~t!52~Â1Â†!, ~38!

@N̂,Â†#5Â†g~t!, @N̂,Â#52g~t!Â, ~39!

FIG. 1. Plot of the Gompertz functionG(t)5G`e2(1/2)e2A2t

and Morse functionV(t)5
1
4 (12e2A2t)2 ~dimensionlesst coordi-

nate andG`51 are used!. The horizontal line represents th
ground-state (v50) eigenvalueW051/4 of the Gompertz-Morse
equation~10!, whereast i52 ln(2)/A2 is the inflection point of the
Gompertz curve.
6-3
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@Â,g~t!#52g~t!, @Â†,g~t!#5g~t!,

@N̂,g~t!#52g~t!. ~40!

The set of operators$N̂,Â,Â†,g(t)% spans the time-
dependent analog of the Lie algebrah(t)4 in which g(t)
5e2A2t plays a role of the time-dependent ‘‘unit’’ operato
For g(t50)51 commutators~38! and ~39! reduce to the
well-known relations for harmonic oscillator@31#, whereas
commutators~40! differ from the corresponding relation
@31#. The consistency is retrieved only by making use of
more general relations

@Â,g~t!#5
1

A2

dg~t!

dt
52g~t!, ~41!

@Â†,g~t!#52
1

A2

dg~t!

dt
5g~t!, ~42!

@N̂,g~t!#5A2
dg~t!

dt
2@Â,g~t!#52g~t! ~43!

employed to obtain Eq.~40!. Now, it becomes clear that fo
g(t50)51 commutators~41!–~43! are equal to zero as i
should be for the harmonic oscillator@31#.

IV. GROWTH AND REGRESSION EIGENSTATES

Equations~36! and ~37! are time-dependent counterpar
of the annihilation and creation relations for the Morse
cillator with anharmonicity constantxe51. In particular, the
action of operatorÂ on G(t) can be interpreted as annihila
tion of the Gompertz ground state~fundamental eigenmode!
of growth. Exploiting this analogy we found coherent sta

ua&5Ga~t!5G`eA2ate2(1/2)e2A2t
5eA2atG~t! ~44!

of the annihilation~growth! operator satisfying@31#

Âua&5aua&. ~45!

From Eq.~45! one gets relation for the creation~regression!
states

^auÂ†5^aua* , ~46!

with solutions

^au5Ga
†~t!5G`

† e2A2a* te(1/2)e2A2t
5e2A2a* tG†~t!.

~47!

The Gompertz coherent states satisfy unitary relation

Ga~t!†5$@Ga~t!#* %21, ~48!

hence, for real eigenvaluesaPR the Gompertz states o
growth are simply related to the reciprocal states of reg
sion ~35!.
02191
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Although the Gompertz coherent states are represente
the finite, single valued, and continuous functions~44!, these
do not satisfy the boundary conditions usually applied
quantal systems. For example, these may not disappe
infinity. Consequently, normalization of the Gompertz sta
is not possible in the infinite time intervals. Since the proc
of biological growth takes place in the finite periods, due
finite time existence of the systems under consideration,
can normalize such states in the finite intervaltP^0,n&.
Keeping in mind this restriction let us multiply Eq.~45! on
the left side bŷ au, whereas Eq.~46! on the right side byua&
getting

^auÂua&5a^aua&, ~49!

^auÂ†ua&5a* ^aua&. ~50!

For the ground state of growth and regression whena50
~generallyaPR) one gets

^aua&5n, ~51!

whereas for complexaPZ

^aua&5
eA2n(a2a* )21

A2~a2a* !
. ~52!

In both cases the expected values of the annihilation~cre-
ation! operator are generated from the relations

^auÂua&

^aua&
5a,

^auÂ†ua&

^aua&
5a* . ~53!

To prove that Eq.~44! represents coherent states norm
ized according to the above described procedure, let us
sider the time-dependent analog of the Nieto-Simmons eq
tion @32#

FT~t!2 iÊ
DT

DEG ua&5F ^auT~t!ua&2 i ^auÊua&
DT

DEG ua&

~54!

in which

Ê5 i
d

dt
~55!

is the energy operator expressed int coordinate (\51),
whereas

T~t!52
1

A2
e2A2t ~56!

is, to within a constant, the time-dependent Morse varia
appearing in Eqs.~30! and ~31!. The remaining terms are
defined as follows:

DT5A^auT~t!2ua&2^auT~t!ua&2, ~57!

DE5A^auÊ2ua&2^auÊua&2. ~58!
6-4
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Equation~54! simplified to the form

FT~t!1l
d

dtG ua&5F ^auT~t!ua&1l^au
d

dt
ua&G ua&,

~59!

where

l5
DT

DE
~60!

has the solutions

ua&5G`e2(1/2l)e2A2t
eA2at/l, ~61!

including Eq.~44! as a special case (l51), provided that
the right-hand side of equation~59! reduces to

F ^auT~t!ua&1l^au
d

dt
ua&G5A2a. ~62!

By differentiating function~61! once with respect tot coor-
dinate, one may calculate

l^au
d

dt
ua&52^auT~t!ua&1A2a^aua&, ~63!

hence, relation~62! is satisfied for̂ aua&51 normalized ac-
cording to Eq.~52!.

For l51, Eq.~59! reproduces~45!, whereas function Eq
~61! reduces to~44!. The interpretation of the casel51 is
given in the following section.

V. MINIMUM UNCERTAINTY COHERENT STATES

The ordinary~space-dependent! coherent states of micro
systems are defined as@31# ~i! eigenstates of the annihilatio
operator,~ii ! states that minimize the position-momentu
uncertainty relation and~iii ! states that arise from the oper
tion of a unitary displacement operator to the ground stat
the microsystem. In the preceding section, we proved that
Gompertz coherent states are eigenstates of the annihil
operator identified with the operator of the Gompertz
growth. Here, we prove that such states minimize the tim
energy uncertainty relation in which the originalt coordinate
is replaced by its exponential form~56!.

The space-dependent coherent states of the Morse o
lator minimize the position-momentum uncertainty relati
@30#

~DQ!2~DP!2> 1
4 ^au f ~q!ua&2, @Q~q!,P̂#5 i f ~q!,

~64!

in which P̂52 id/dq (\51) is the momentum operator an

Q~q!52
1

A2xe

e2A2xeq1
1

A2xe

~12xe! ~65!

is, to within a constant, the space-dependent Morse vari
@30#, which depends on theq-coordinate defined by Eq.~15!.
02191
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On the contrary, the time-dependent coherent states~44!
should minimize the time-energy uncertainty relation

~DT!2~DE!2> 1
4 ^aug~t!ua&2, @T~t!,Ê#5 ig~t!,

~66!

including theT(t) variable and energy operatorÊ defined by
Eqs. ~56! and ~55!, respectively. It is easy to verify tha
Q(xe51,q5t)5T(t).

We confirm that states~44! are indeed the minimum un
certainty coherent states by proving that

~DT!2~DE!25 1
4 ^aug~t!ua&2 ~67!

for

@T~t!,Ê#5 ig~t!, g~t!5e2A2t. ~68!

To this effect let us calculate

^auT~t!ua&5
1

A2
^auÂ1Â†ua&5

1

A2
~a1a* !, ~69!

^auÊua&5 i
1

A2
^auÂ2Â†ua&5 i

1

A2
~a2a* !, ~70!

^auT~t!2ua&5 1
2 ^auÂÂ12Â†Â1g~t!1Â†Â†ua&

5 1
2 @~a1a* !21^aug~t!ua&#, ~71!

^auÊ2ua&52 1
2 ^auÂÂ22Â†Â2g~t!1Â†Â†ua&

52 1
2 @~a2a* !22^aug~t!ua&#. ~72!

To obtain relations~71! and ~72! we employed commutato
~38! given in the form

ÂÂ†5Â†Â1g~t!. ~73!

Having calculated Eqs.~69!–~72! we can proceed to evaluat

~DT!25^auT~t!2ua&2^auT~t!ua&25 1
2 ^aug~t!ua&,

~74!

~DE!25^auÊ2ua&2^auÊua&25 1
2 ^aug~t!ua&, ~75!

providing

~DT!2~DE!25 1
4 ^aug~t!ua&2, ~76!

in full agreement with Eq.~67!. Additionally, from Eqs.~74!
and ~75! one gets the relationDT/DE5l51 appearing in
the Nieto-Simmons formula~54!. In this way we prove that
Eq. ~54! is satisfied by the Gompertz coherent states m
mizing the time-energy uncertainty relation~66!.

For the ordinary coherent states of the Morse oscilla
we haveDQ5DP5const@30# in which Q(q) is the spatial
variable defined by Eq.~65!. Hence, the coherent states
the Morse oscillator evolve coherently in time being loc
ized on the classical space trajectory. In the case of
Gompertz states~44!, we haveDT5DE5const in which
6-5
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T(t) is the temporal variable defined by Eq.~56!. In view of
this the time-dependent Gompertzian states evolve co
ently in space being localized on the classical time traject
It becomes apparent that the spatial coherence is an im
nent feature of the Gompertzian growth. A generalization
the Schro¨dinger approach@33# to time evolution of the co-
herent states of the harmonic oscillator to include spa
evolution of the time-dependent Gompertz coherent st
will be presented in separate paper.

VI. CONCLUDING REMARKS

We have derived the temporal second-order differen
equation governing growth of the Gompertzian systems. T
equation, expressed in dimensionless coordinate, has
form identical to that of the quantal Schro¨dinger equation for
the time-dependent analog of the Morse oscillator with
harmonicity constant equal to 1. The Gompertz-Morse eq
tion has only one finite, single valued, and continuous so
tion, which corresponds to the fundamental eigenmode of
Gompertzian growth. This eigenmode is represented by
Gompertz function of growth, whereas the associated eig
value is equal to the depth of the Morse function at the m
mum. The transport of mass in the Gompertzian system
driven by the time-dependent counterpart of the Morse
tential. This process takes place in the direction consis
with the arrow of time and resembles dissociation of an
dinary anharmonic oscillator.

The coherent states of the Gompertzian systems h
been derived. These are the eigenstates of the annihila
operator identified with the operator of the Gompertz
growth. Such states evolve coherently in space being lo
ized along the classical time trajectory, hence, the Gomp
zian growth is predicted to be coherent in space. We fi
here a strong analogy to the spatial long-range biocohere
reported by Fro¨hlich @34# and macroscopic quantal cohe
ence in Bose-Einstein condensates@35–37#. In the Fröhlich
model a system of coupled oscillators in a heat bath is s
plied with energy at a constant rate. When the rate excee
certain mean rate, the oscillators condense into one g
dipole whose subelements are spatially inter-related to e
other. This phenomenon features a considerable simila
with the low-temperature condensation of Bose-Einstein
@34#. The macroscopic quantal coherence is observed in
systems composed of a large number (103 for 7Li, 106 for
87Rb and 107 for 23Na) of trapped cold atoms@35–37#. In
this phenomenon, all particles cooperate collectively prod
ing spatiotemporal organization of the multiparticle syste
in which all particles share the same quantum state@35–37#.

We recall here that according to the Laird result@24# the
Gompertz function~1! evaluated for the system of prolifer
ating cells can be extrapolated to one cell. It means that
function properly describes coherent growth of the mac
system ~organism, organ, tumor! as a whole and its sub
systems~microsystems! composed of a single. Those su
systems are spatially inter-related and share the same
~mode! of growth as the system as a whole. Such a lo
02191
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range cooperation enables the system to develop com
patterns in response to external and internal conditions. T
response requires self-organization on all levels of the s
tem and cooperative behavior of all its subelements. T
local models of cell-to-cell communication@38# via ~i! mo-
lecular signalling~hormones, cytokines, neurotransmitte
etc.!, ~ii ! extracellular matrix~integrins, microtubules, actin
etc.!, or ~iii ! gap junctions~mediated by ions or current flow!
do not explain satisfactorily the observed long-range spa
coherence of the growing systems and decoherence lea
to uncontrolled growth and malignancy.

The coherent formation of the specific growth patterns
the Gompertzian systems seems to be a result of the non
long-range cooperation between the microlevel~the indi-
vidual cells! and the macrolevel~the system as a whole!. The
nonlocal communication channel enables each cell to ob
information about the state of the system and respond t
adequately. Such nonlocal cooperative self-organization
intricate communication capabilities have been observed
the bacterial colonies by Ben-Jacob@39# and his co-workers
@40#. The former include~i! collective production of extra-
cellular ‘‘wetting’’ fluid for movement on hard surfaces@41#,
~ii ! long-range chemical signalling, e.g., quorum sensing@42#
and chemotactic signaling@15#, and~iii ! collective activation
and deactivation of genes@16#. Owing to these capabilities
the bacterial colonies develop complex spatiotemporal p
terns in response to adverse growth conditions. This proc
is accomplished via cooperative complexification of t
colony through hierarchical self-organized patterning me
ated by the information transfer between the individual b
terium ~microlevel! and the colony as a whole~macrolevel!
@39,40#. Such a long-range communication between mic
organisms can be realized through a nonlocal bio-signall
the appropriate communication model has been develope
Ben-Jacobet al. @14#. It should be noted here that growth o
the bacterial colonies is well reproduced by the temperatu
dependent Gompertz function introduced by Zwieteri
et al. @43#. The nonlinear regression analysis performed
the experimental data obtained for the pathogensListeria
monocytogenesand Yersinia enterocoliticaprovided excel-
lent fit of the Gompertz model with observed growth of t
bacteria inoculated in chicken meat@44#. On the basis of the
results obtained in this work, we conclude that growth of t
bacterial colonies characterized by the Gompertz functio
coherent in space.

The macroscopic long-range spatial coherence is obse
also in highway traffic. Helbing and Huberman@45# reported
coherent moving states, which arise from cooperative in
actions between vehicles. As the density of vehicles incre
their interactions cause a transition into a highly coher
state in which all vehicles have the same average velo
and a small dispersion around this value. The theoretical
dictions of Helbing and Huberman have been confirmed
empirical data obtained from highway traffic in the Nethe
lands@45#.

The Gompertz coherent states seem to be a conven
tool for interpretation of interpret the micro-macro corr
6-6
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spondences so far intensively studied only in terms of
ordinary space-dependent coherent states@46#. For example,
using the HusimiQ representation@47#, one finds that there
are precise patterns of classical trajectories in the wave fu
tion. TheQ distribution follows the classical periodic orbit
@48#, whereas classical unstable periodic orbits are endo
with ‘‘scars’’ in the Q distribution @49#.
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