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Coherent states of Gompertzian growth
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The origin of the Gompertz functioB(t) = G,e”2~¢ ™) widely applied to fit the biological and medical

data, particularly growth of organisms, organs, and tumors is analyzed. It is shown that this function is a
solution of a time-dependent counterpart of the Sdimger equation for the Morse oscillator with anharmo-

nicity constant equal to 1. The coherent states of the Gompertzian systems, which minimize the time-energy
uncertainty relation, have been found. These are eigenstates of the annihilation operator identified with the
operator of growth, whereas eigenstates of the creation operator represent the Gompertzian states of regression.
The coherent formation of the specific growth patterns in the Gompertzian systems appears as a result of the
nonlocal long-range cooperation between the microléhel individual cell and the macrolevethe system as

a whole.
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I. INTRODUCTION growth and the second constrains growth at the saturation
stage. The upper limit of the Gompertzian growth is charac-
Evaluation of the possible growth modes or formationterized by the asymptote
patterns of the systems evolving in time is an important task ba
to realize especially for biological and medical sciences. In- G=Gee™", )
vestigations in the field have concentrated @ finding
models of growth which satisfactorily fit the experimental
data[1-6], (ii) prediction of the growing systems response 1 /a
to external agentg7—10], and (iii) explanation of the basic t=— —In(—), G(t)=Gpelt~d72, ©)
mechanisms regulating growfi1-13, in particular coop- a b
erative behavior and communication channels between su
elements of the growing systeriis4 —17.
Among the different models of growth, the Gompertz

Iwhereas the inflection point is fixed at

l;]"he Gompertz functioil) is a solution of the temporal first-
order differential equationb(>0) [18]

function[18] dG(t)
T—be_atG(t)=O, (4)
G(t)=Goedat=e ™ (1)
whereas the regression solutié(t) satisfies
has been most broadly and successfully applied to fit the dG'(t)
experimental datfl9—-25, particularly the growth of organ- at +be 3GT(1)=0. (5)

isms, organs, tissues, and tumors. Halis retardation con-

stant;_b denote_s the initial growth or regression rate constantyiany attempts have been undertaken to interpret function

the sign ofb indicates whether the system grows X Or (1) and Egs.(4) and (5) in biological [26], mathematical

regresses<). The constanG,=G(t=0) stands for the ini-  [27] or thermodynamical termi@8]. In this work we inter-

tial characteristic of the system, for instance, the initial MasSpret the growth of the Gompertzian systems in terms of the

volume, diameter, or number of proliferating cells. An inter- time-dependent counterpart of the coherent states of the

esting feature of functiorl) is that it properly describes \jorse oscillator. Such states minimize the time-energy un-

growth of the macrosystems composed of a large initial NUMgertainty relation and are eigenstates of the annihilation op-

ber of proliferating cells 6o=10°~1C°) [25] as well as mi-  grator identified with the operator of the Gompertzian

crosystems composed of a single céllp=1) [24]. In this  growth. We derive also the second-order differential equation

work we investigate the Gompertzian systems in WHB§)  governing the Gompertzian growth, which includes Eds.

=1 for the sake of interpretative simplicity and (5) as the special cases. This equation is a time-
The Gompertz functiorfl) belongs to the wide class of dependent counterpart of the Satlirger equation for the

sigmoidal(S-shapejifunctions[3] and describes exponential Morse oscillator with anharmonicity constant equal to 1.
growth, which then is exponentially retarded and saturated as
time continues. The Gompertzian growth is a result of two Il. GOMPERTZ-MORSE EQUATION
classes of competitive processes: the first process stimulates '
Differentiating function(1) twice with respect to the time

coordinate and taking advantage of Ed), we get the

*Electronic address: marcin@rovib.amu.edu.pl second-order differential equation
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d?G(t
- dti )—bae’a‘G(t)Jrbze’zatG(t):O, (6)
which can alternatively be written as
d*G(t) . a?(  2b 2G e azG t .
e alttze H=761. @
The function
Vi) a2 L 2b |2 o
O=71-e (8

appearing in Eq(7) has a minimum equal to zero for

te=— 1In s , 9
a \2b
hence, Eq(7) can be rewritten in the form
1d°G(n) 1 . 1
3 g2 * 7(1-e¥)%G(n=G(n (10
in which
G(r)=G,e W2 ™ (11)
and
7=(2)"a(t—to). (12

The second term in Eq10) consists of the time-dependent
counterpart of the potential
V(x)=Dg(1—e™®)? (13

introduced first by Morsg29] to describe anharmonic vibra-
tions in diatomic systems. Hef®, is the dissociation energy

of the system, whereas denotes the displacement of the

atom from the equilibrium position.
To explain what Eq(10) means let us consider the Schro
dinger equation for the Morse oscillator

h? d?p(x) axy2
—2—mOW+De(1—e ) Y(X)=E¢(x) (14
which transformed to dimensionless coordinate
0= (Mowe/fi) )
gives[30]
1d%p(q) 1 i E
N N —a eq 2 _
2 4 +4Xe(1 e VN %Y(q) hro, (a).
(16)
Here
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2D,
Mo

(17

we=2a
is the vibrational frequency defined by the reduced nmags
of the diatomic systemx, is anharmonicity constant

_ﬁwe
4D,

Xe (18)
defined by Planck’s constaht=%21r.
The Morse procedurg29] applied to Eq.(16) provides
eigenvalues
1 2
v+ —) Xe

E,=fhwe 5

, v=0,12..., (19

N 1
)
and ground-statev(=0) eigenfunction

Do(q) =€~ Ve ereqe_ 1/2%e(1-Xe)q-

(20)
consequently Eq(16) can be specified in the forfi80]

2
- % : di(f) + i(l—em“)zw(q)
1 1\2
= v+§)— v+§ Xe|¥(Q). (21
It becomes apparent that the correspondences
g—7, Xe—1, v—0 (22

transform Eq.(21) into Eq. (10) and function(20) into Eq.
(11). Hence, the Gompertz functidd) can be viewed as the
ground state=0) solution of the time-dependent counter-
part of the Schrdinger equation for the Morse oscillator
with anharmonicity constant,=1.

The question emerges: does KEf). have solutions corre-
sponding to the Morse solutions for=1,2 ... ? Toanswer
this question let us rewrite Eq7) in the form

- d’G(t) a?

dt?

a

2b at)2 _
Tl1-Te | sw=won, @3

which conforms to the standard eigenvalue probl&@(t)
=WG(t). Then applying the variable

y=e 7, 7 =a(t—ty), (24)
Eq. (23) is transformed to
d’G(y) 1dG(y) 1 1 W-a%4
+— +| ==+ =+—=—|G(y)=0.
dy? y dy 4 2y @¥? )
(25
Introducing
W-—a?/4 b2
G(y)=e V4" (y), —=——71 (26
a 4
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into Eq. (25), one gets

d?f d b
N R A 1Y R NEY)
dy

f

dy

The solutions of Eq(27) can be given by the generalized
Laguerre polynomial$29] provided that the last term takes

an integer value—b/2=v (v is an integer numbgr The | e
relationb= —2v together with Eq(26) provide eigenvalues //-/
of Eq. (23
1
W, =a? Z—v2>, v=01.2..., (28
1 1 2 3

which forv =0 yields the eigenvalud/,=a?/4 of Eq. (7). i E
The mathematical functions describing Gompertzian )
growth or regression should be continuous, single valued, FIG. 1. Plot of the Gompertz functiofs(7)=G e (¥2¢

and finite. In this respect these resemble quantal functions afnd Morse function/(7)=3(1—e~*?7)? (dimensionless coordi-

the Q class. SinceG(y) defined by Eq.(26) with y=e”' nate andG.=1 are usefl The horizontal line represents the
given by Eq.(24) should take finite values fore (0%), grounq-state {=0) eigenvalueWO::F/4 of _the G.omper_tz-Morse
parameteb= —2v cannot be negative. This criterion is sat- €duation(10), whereasr, = ~In(2)/\2 is the inflection point of the
isfied only forv=0; consequently Eq(23) has only one GOmpertz curve.

fundamental(ground-state eigenmode characterized by the | . .
Gompertz fu(r?ctior(l), Wrﬁchgcorresponds to the eigenzalue which correspondsAto the Gompertz equation of groh
W,=a?/4. The later quantity is also the limiting value Hence, we identifyA with the operator of growth. On the

5 b , other hand, operato?)(r produces the regression equatién
a 2 a

_ P at) LY
1-—e 7 (29

ATGT( 7.): i e V27 Gle+(1/2)67 “‘JET: 0,

V2

of the time-dependent Morse functi©8). We conclude that (34)

the Gompertzian growth has only one eigenmode represented

by function (1). This eigenmode corresponds to the eigen-hence, we identifyA" with the regression operator. It should
valueW,=a?/4 being an asymptotgor t— ) of the Morse  be pointed out that the change in sign of the regression func-
function (8). Hence, in the Gompertzian systems the transtion G'(7) appearing in Eq(34) is not produced by complex
port of mass(or mass flux is not of oscillatory type, but conjugation 6,be R, are real numbeysbut rather by the
takes place only in the direction consistent with the arrow ofrelation

time (see Fig. 1

t—oo

p(r)T=y(n)~t (35

Il. GROWTH AND REGRESSION OPERATORS .
valid for ¢(7) e R.

Introducing two operators The growth equatioii33) takes a simple form in the ket-
bra notation

.1 1 = 1
— | 12y ~
Arpla T gte @]' 30 Aloy=o, (36)
whereas its adjoint
At ! d+1 1-e 27 ! (31)
= | — — PR —e Ve — — , ~ -

ABCEARN NA (Al0Y)T=(0]AT=0 (37)
the Gompertz-Morse equatiofl0) can be rearranged into COITesponds to regression equati@). Here[0) and (0|
factorized form represent the Gompertz ground states of growth and regres-

sion, respectively.
ATAG(7)=0. (32 Introducing an analog of the well-known particle number

operatorN=A'A [31] and a time-dependent functiag( )

It is easy to verify that the Gompertz functighl) is a so- =e %", we get the following commutation relations:

lution of the equation
[AA]=g(r)=—(A+A"), (38)

=0, (33 A R A n
39 [N,AT]=Ag(7), [NA]=-g(7)A, (39)

e~ V27

d 1 ‘
- e V27

dr 2

. 1
AG(1)= — G.e (12

2
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[Ag(n]=—g(r), [Alg(r)]=g(7),
[N,g(7)]=—g(7). (40)

The set of operators{N,A,Af g(7)} spans the time-

dependent analog of the Lie algebnér), in which g(7)

more general relations

1 dg(7)
[A,9 (r)]—f 4 =9, (41)
A 1 dg(7)
to(n]=— —=——=g(r
[A%,9(n)] % dr a(n), (42)
dg(7)
[N,g(n)]= J———[Ag(r)]——g(r) (43)

employed to obtain Eq40). Now, it becomes clear that for
g(7=0)=1 commutatord41)—(43) are equal to zero as it

should be for the harmonic oscillatf31].

IV. GROWTH AND REGRESSION EIGENSTATES

Equations(36) and (37) are time-dependent counterparts
of the annihilation and creation relations for the Morse os-
cillator with anharmonicity constam,=1. In particular, the
action of operatoA on G(r) can be interpreted as annihila-
tion of the Gompertz ground stat@indamental eigenmodle
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Although the Gompertz coherent states are represented by
the finite, single valued, and continuous functigad), these
do not satisfy the boundary conditions usually applied to
quantal systems. For example, these may not disappear at
infinity. Consequently, normalization of the Gompertz states
is not possible in the infinite time intervals. Since the process

=e 27 plays a role of the time-dependent “unit” operator. of biological growth takes place in the finite periods, due to

For g(7=0)=1 commutators38) and (39) reduce to the
well-known relations for harmonic oscillatgB1], whereas
commutators(40) differ from the corresponding relations
[31]. The consistency is retrieved only by making use of th

finite time existence of the systems under consideration, we
can normalize such states in the finite interval(On).
Keeping in mind this restriction let us multiply E45) on

dhe left side by «|, whereas Eq46) on the right side bya)
g

etting
(a|Ala)=a{a|a), (49
(alAT|a)=a*(a]a). (50

For the ground state of growth and regression when0
(generallya € R) one gets

(a|la)=n, (52
whereas for complexe 2
< | > e\s“in(afa*)_l
d\x)— —— .
V2(a—a*)

In both cases the expected values of the annihilat@a-
ation) operator are generated from the relations

(52

(alAla) _ (alA|a)

(ala)y (ala)

To prove that Eq(44) represents coherent states normal-
ized according to the above described procedure, let us con-

=a*. (53

of growth. Exploiting this analogy we found coherent statessider the time-dependent analog of the Nieto-Simmons equa-

|a)=G (1) =G.e207e (M2 F=gZurg(r) (44
of the annihilation(growth) operator satisfying31]
Ala)=ala). (45)

From Eq.(45) one gets relation for the creatidregression
states

(a|AT=(a|a*, (46)

with solutions

<C(| _ GI{( ’T) — Gle7 Va* Te(1/2)97 ““?T: e Za* TGT( ’T) )
(47)
The Gompertz coherent states satisfy unitary relation
G T={[G(D]*} 1, (48)

hence, for real eigenvaluese R the Gompertz states of
growth are simply related to the reciprocal states of regres-

sion (35).

tion [32]
AT
T( )—IE—| a)= <a|T(T)|a)—I<a|E|a>E}|a>
(54)
in which
. . d
E—IE_ (55)

is the energy operator expressed sincoordinate f=1),
whereas

1
T(rn)=——=e " (56)

V2

is, to within a constant, the time-dependent Morse variable
appearing in Eqs(30) and (31). The remaining terms are
defined as follows:

AT=(a|T(1)? @)= (| T(7)] )7, (57)

AE=\/<a|E2|a>—(a|E|a>2. (58

021916-4
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Equation(54) simplified to the form

d d
(1A - |la)=| (@l T(D] @) +Mal 5-la) ),
(59
where
AT
has the solutions
|a)=G. e~ (2)e" Prgarh, (61)

including Eq.(44) as a special case\& 1), provided that
the right-hand side of equatids9) reduces to

d
(a|T()|a)+Nal 4-|a) |= V22 (62
By differentiating function(61) once with respect te coor-
dinate, one may calculate

d
)x(a|d—7_|a>=—<a|T(T)|a>+\/§a<a|a>, (63)
hence, relatiori62) is satisfied for @|«) =1 normalized ac-
cording to Eq.(52).

For\=1, Eq.(59) reproduces45), whereas function Eq.

(61) reduces td44). The interpretation of the case=1 is
given in the following section.

V. MINIMUM UNCERTAINTY COHERENT STATES

The ordinary(space-dependentoherent states of micro-
systems are defined g31] (i) eigenstates of the annihilation

PHYSICAL REVIEW &B, 021916 (2003

On the contrary, the time-dependent coherent stédds
should minimize the time-energy uncertainty relation

[T(n),E]=ig(7),
(66)

(AT)?(AE)?=i(alg(7)|a)?,

including theT () variable and energy operaiﬁrdefined by
Egs. (56) and (55), respectively. It is easy to verify that
Q(Xe=1g=7)=T(7).
We confirm that state&44) are indeed the minimum un-
certainty coherent states by proving that
(AT)*(AE)?= |a)?

(alg(n) (67)

for
[T(r),E]=ig(7), g(r)=e 2",

To this effect let us calculate

(68)

(| T(7)|a)= \/_(a|A+AT|a) \/_(a-i-a), (69)

<a|E|a>—l7<a|A AT|01>—IT(01 a*), (70
(a|T(1)?|a)=3(a|AA+2ATA+g(7)+ATAT| @)

=3[(a+a*)?+(alg(7)|a)], (72)
(a|E?|a)=—3(a|AA—2ATA—g(7)+ATA"|a)

=—3[(a—a*)*~(alg(n)]|a)]. (72)

To obtain relationg71) and (72) we employed commutator
(38) given in the form

operator, (i) states that minimize the position-momentum
uncertainty relation andii) states that arise from the opera- _
tion of a unitary displacement operator to the ground state ofaving calculated Eq$69)—(72) we can proceed to evaluate

the microsystem. In the preceding section, we proved that the
(AT>2=<aIT<r>2|a>—<a|T<r>|a>2=%<alg(7)|a>,(
74

AAT=ATA+g(7). (73

Gompertz coherent states are eigenstates of the annihilation
operator identified with the operator of the Gompertzian
growth. Here, we prove that such states minimize the time-

2_ ~2 - 2_
energy uncertainty relation in which the originatoordinate (AE)?=(a|E?|a)—(alE|a)*=3(alg(7)|a), (79
is replaced by its exponential for(86). rovidin
The space-dependent coherent states of the Morse oscit! 9
lator minimize the position-momentum uncertainty relation (AT)2(AE)2=1(a|g(7)|a)?, (76)

[30]
in full agreement with Eq(67). Additionally, from Eqs.(74)
(AQ)*(AP)*=2(alf(q)|@)?, and (75) one gets the relatiod T/AE=\=1 appearing in
the Nieto-Simmons formul&4). In this way we prove that
Eq. (54) is satisfied by the Gompertz coherent states mini-
mizing the time-energy uncertainty relatio®o).
For the ordinary coherent states of the Morse oscillator
1 o VT | 1 we haveA Q= AP=const[30] in which Q(q) is the spatial
V2%, V2%, variable defined by Eq(65). Hence, the coherent states of
the Morse oscillator evolve coherently in time being local-
is, to within a constant, the space-dependent Morse variabliged on the classical space trajectory. In the case of the
[30], which depends on thg-coordinate defined by E@15). Gompertz state$44), we haveAT=AE=const in which

[Q(q),P]1=if(q),
(64)

in which P=— id/dq (A=1) is the momentum operator and

(65

Q(q)=-— (1—Xe)

021916-5
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T(7) is the temporal variable defined by E§6). In view of ~ range cooperation enables the system to develop complex

this the time-dependent Gompertzian states evolve cohepatterns in response to external and internal conditions. This

ently in space being localized on the classical time trajectorytesponse requires self-organization on all levels of the sys-

It becomes apparent that the spatial coherence is an immém and cooperative behavior of all its subelements. The

nent feature of the Gompertzian growth. A generalization oflocal models of cell-to-cell communicatidi38] via (i) mo-

the Schrdinger approachi33] to time evolution of the co- lecular signalling(hormones, cytokines, neurotransmitters,

herent states of the harmonic oscillator to include spatiaétc), (i) extracellular matrixintegrins, microtubules, actin,

evolution of the time-dependent Gompertz coherent statestc), or (iii ) gap junctiondmediated by ions or current flow

will be presented in separate paper. do not explain satisfactorily the observed long-range spatial
coherence of the growing systems and decoherence leading
to uncontrolled growth and malignancy.

VI. CONCLUDING REMARKS The coherent formation of the specific growth patterns in

] ] . the Gompertzian systems seems to be a result of the nonlocal
We have derived the temporal second-order dn‘ferentla|omg_range cooperation between the microletigle indi-

equation governing growth of the Gompertzian systems. Thig;qa celly and the macrolevethe system as a wholeThe

equation, expressed in dimensionless coordinate, has th@nocal communication channel enables each cell to obtain
form identical to that of the quantal Schliager equation for ih¢armation about the state of the system and respond to it

the time-dependent analog of the Morse oscillator with anyequately. Such nonlocal cooperative self-organization and

harmonicity constant equal to 1. The Gompertz-Morse eqUanricate communication capabilities have been observed in
tion has only one finite, single valued, and continuous SO'“the bacterial colonies by Ben-JacE89] and his co-workers
tion, which corresponds to the fundamental eigenmode of thgsq) The former include(i) collective production of extra-
Gompertzian growth. This eigenmode is represented by thggyjar “wetting” fluid for movement on hard surfacé41],

Gompertz function of growth, whereas the associated eigemn long-range chemical signalling, e.g., quorum senf#gj

value is equal to the depth of the Morse function at the min"and chemotactic signalirid.5], and(iii) collective activation

mum. The transport of mass in the Gompertzian Systems igng geactivation of gendd6]. Owing to these capabilities,
driven by the time-dependent counterpart of the Morse poge pacterial colonies develop complex spatiotemporal pat-

tential. This process takes place in the direction consistent s in response to adverse growth conditions. This process

W|th the arrow of_tlme gnd resembles dissociation of an org accomplished via cooperative complexification of the
dinary anharmonic oscillator.

colony through hierarchical self-organized patterning medi-

The coherent states of the Gomperizian systems havgeq py the information transfer between the individual bac-
been derived. These are the eigenstates of the annihilatiqQi,m (microleve) and the colony as a whol@nacroleve)
operator identified with the operator of the Gompertzianrzg 40. Such a long-range communication between micro-
growth. Such states evolve coherently in space being IocaEirganisms can be realized through a nonlocal bio-signalling;
ized along the classical time trajectory, hence, the Gomperiyg annropriate communication model has been developed by
zian growth is predicted to be coherent in space. We finGggn_jacolet al. [14]. It should be noted here that growth of
here a strong analogy to the spatial long-range biocoherenGge pacterial colonies is well reproduced by the temperature-
reported by Frblich [34] and macroscopic quantal coher- yependent Gompertz function introduced by Zwietering
ence in Bose-Einstein condensal85-37. In the Frallich o 5 [43]. The nonlinear regression analysis performed on
m_odel a system of coupled oscillators in a heat bath is supye experimental data obtained for the pathogkisseria
plied with energy at a constant rate. When the rate exceedsrﬂonocytogeneand Yersinia enterocoliticaprovided excel-

S?r;?énwrﬂggg ;SEE'I t:‘ne r?tscnlrators 'golrl]d(ier?tsirmltot %nte g'aﬁrll‘ént fit of the Gompertz model with observed growth of the
P elements are spatially Inter-related 10 €aql, o5 inoculated in chicken mgd#]. On the basis of the

other. This phenomenon features a considerable Sim”arit}/esults obtained in this work, we conclude that growth of the

with the low-temperature condensation of Bose-Einstein ga . . . .
[34]. The macroscopic quantal coherence is observed in th%acterlal colonies characterized by the Gompertz function is
coherent in space.

systems composed of a large number3(idr “Li, 10° for h | . .
8'Rb and 10 for °Na) of trapped cold atomg35—37. In The macroscopic long-range spatial coherence is observed

this phenomenon, all particles cooperate collectively produc@!SO in highway traffic. Helbing and Hubermp4b] reported
ing spatiotemporal organization of the multiparticle systemoherent moving states, which arise from cooperative inter-
in which all particles share the same quantum §i@e-37.  actions between vehicles. As the density of vehicles increase,
We recall here that according to the Laird regai] the their interactions cause a transition into a highly coherent
Gompertz function(1) evaluated for the system of prolifer- State in which all vehicles have the same average velocity
ating cells can be extrapolated to one cell. It means that thighd a small dispersion around this value. The theoretical pre-
function properly describes coherent growth of the macrodictions of Helbing and Huberman have been confirmed by
system(organism, organ, tumpras a whole and its sub- empirical data obtained from highway traffic in the Nether-
systems(microsystemps composed of a single. Those sub- lands[45].
systems are spatially inter-related and share the same state The Gompertz coherent states seem to be a convenient
(mode of growth as the system as a whole. Such a long+tool for interpretation of interpret the micro-macro corre-

021916-6



COHERENT STATES OF GOMPERTZIAN GROWTH

spondences so far intensively studied only in terms of the

ordinary space-dependent coherent stpdés For example,
using the HusimiQ representatiofi47], one finds that there

PHYSICAL REVIEW &B, 021916 (2003
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